Search This Blog

Showing posts with label powered flight. Show all posts
Showing posts with label powered flight. Show all posts

Saturday, 25 April 2020

Typical power to weight ratios for RC planes

Typical power to weight ratios for RC models.

11-15 watts/100g Minimum level of power for decent performance
15-20 watts/100g Trainer and slow flying scale models
20-24 watts/100g sport aerobatic and fast flying scale models
24-29 watts/100g Advanced aerobatic and high-speed models
29-33 watts/100g Lightly loaded 3D models and ducted fans
33-44 watts/100g Unlimited performance 3D models 

Saturday, 23 June 2018

Scratch-built Micro Skyhunter

3mm depron version of the wonderful little twin boom Eachine Micro Skyhunter.
Dimensions are similar to the original but with a slimmer fuselage.
1300mAH 3S battery and FPV gear.
CG best around 35mm.
The final version has a shorter nose, reinforced horizontal stab and rounded wing tips




Build video

Maiden flights

Mods Q&A and FPV

Sunday, 27 March 2016

First RC plane and RC gear recommendation




3 channel crash resistant pusher style motor glider

Turnigy i6 transmitter and receiver (about A$70) -  HobbyKing link

2 x 1300mAH Lipo batteries (about A$11 each) -  HobbyKing link

Turnigy B6 Pro pocket charger or similar (about A$30) - HobbyKing link


NOTE: Most chargers do not come with a power supply. Need to connect to car battery, or use a 12V DC power pack, like a printer or laptop wall charger.

Overview video


Dimension for the new cross tail and shortened tail boom (mm)



Saturday, 31 October 2015

1.1m Fokker Dr 1 triplane

Two wings on the Tigermoth worked so well I had to take the next step...three wings.


The most famous triplane is the Red Baron's Fokker Dr1.

My wings are stiff enough not to need inter plane struts so I decided to stick to the familiar rubber band mounts. That meant I had to come up with a method for creating a rigid mount for the top wing. I recorded detailed build videos along the way.

SPECS
Top Wing - Top 1.1m, iron-on laminate and packing tape. 0.5 x 3mm CF spars
Middle and lower wings - 950mm and 900mm. packing tape. 0.5 x 3mm CF spars
Airfoil - 170mm Clark y
Fuselage - 6mm depron, 3mm ply nose, packing tape.


Saturday, 3 October 2015

1.2m Tigermoth

I have never been much interested in scale model planes apart from the Tigermoth biplane. Tigermoth World is nearby and for my 40th Virginia and I went for aerobatic joy flights...great fun.

I already had enough practice hot wire cut wings laying around for the build so I decided to have a go. I gathered scale measurements from tiger moth photos and made the adjustments needed for a 1.2m wingspan model.

The fuselage is 6mm depron covered with yellow packing tape to mimic the plane I flew in. I added 3mm ply under the nose to take landing impacts and a 5mm ply motor mounting firewall.

The motor is a Hextronic DT750 which had plenty of thrust, especially with a 4S battery. Prop is 11 x 5.5", ESC 40A Plush. 3000 mAH 3S or 4S Lipo gives 20+ minutes of cruising.

Here are build and flight videos of this great looking vintage biplane. It flies just like the real thing, slow and steady with just enough aerobatic capability.

Tuesday, 5 May 2015

Tricopter

Thanks to great build videos by David Windestal I have recently become interested in tricopters. 


Until now I have not bothered with multi rotors at all and still prefer wings and airfoils to motors. But it looked easy enough and searching through my spares box found most of the required electronics. I had three 2822 1450kV motors and three 25A Plush ESCs so only needed to buy a flight control board and some counter rotating props.

Why a tri and not a quad? 
Well every man and his dog has a quad which makes tricopters cooler.
Tricopters have a tilting tail rotor for steering, which gives more "plane-like" flight characteristics. Also there are only 3 motors / ESCs rather than 4 so they are cheaper.







KK2 flight control board
The brains of a multi rotor is the flight control board. I chose the simplest board, the KK2 (A$26 from Hobby King).

The KK2 takes your Aileron, Elevator, Throttle and Rudder commands (or stick movements) and translates them into motor speed changes and tilt servo movements.  
The KK2 has 2 flight modes: Manual, where the tri will stay at the flight angle you command until you make a correction. Self-level, where the tri will return to level when the sticks are centred. The KK2 also supports the Super Simple Gimbal which is really simple and really works, kind of like steady-cam for an onboard camera.

KK2, Rx and servo power supplies
KK2 board on a tricopter requires two power connections, one to power the board and the receiver, and the other to power the tail servo. They need to be separate for it all to work smoothly. Something about gyros and servos and power loops can cause jittering and instability apparently.

The ESC from motor 1 (front left) plugs into the M1 pins on the KK2 (top right) and provides 5V to power the board and receiver. Do not be tempted to plug 12V in anywhere or you will have to order a new KK2 board (yes I did). There are battery monitoring pins but make sure you know what you are doing before connecting, or just dont use them.

On tricopters a second BEC must be connected to M2 pins (or M3...M8) to provide 5V to the servo. You can use the built-in BEC from the ESC on motor 2 if it is rated high enough. Otherwise add an external BEC.

More than one "switching" style BECs should not be connected on these pins at the same time. Linear BECs are OK. If the ESCs on both motor 2 and 3 have switching BECs remove the red servo wire from one of them to disconnect it's BEC.

On a Quad you can use one normal ESC connected to M1 and three OPTO ESCs because there are no servos needing power. OPTO ESCs do not have an onboard BEC.

Firmware upgrades
There is a lot of chat on RCgroups about which firmware is best for the KK2 and the ESCs on a multi rotor. Apparently Stevis for the KK2 gives more options and better performance than the stock firmware, and SimonK firmware for the ESCs gives smoother and more responsive performance. To start off I used the stock firmware on everything just to get a feel for flying multi rotors, and it all worked perfectly well.

I have since flashed the KK2 with Steveis V1.9 using a $5 USBasp programmer from ebay, and bought Afro ESCs pre flashed with SimonK. Performance is smoother and more responsive.

Here are some early videos. I'll add a build video and onboard footage soon. 
At the moment I'm spending time learning to fly better and optimising the tricopter to reduce vibrations. Stay tuned.

Testing and maiden flights

Arm repair time-lapse


SPECS

Motors - Turnigy 2822/14 1450kV

ESCs  - Turnigy Plush 25A (stock firmware) x 3
Updated to Afro 30A (simonK firmware) One with BEC to power the board and 2 OPTO (no BEC) plus a Plush 18A ESC (which has a linear BEC) just to power the servos

FC board - KK2.1.5 stock firmware
Updated to steveis V1.9 firmware

Props - weak flexy green 8 x 4.5" Hobby King / Gemfan
Updated to much stiffer Gemfan 8045C carbon nylon CW/CCW pairs from Banggood

Friday, 3 April 2015

1.2m Acrobat

I was keen to try some aerobatics with powered planes but The Red was not quite up to the task. Too much of a glider and not enough rudder. So this is what I came up with.


It has a 1.2m x 180mm 12% chord Armin wing and a 700mm fuselage both made from 6mm depron covered with 75 micron document laminating film. That is the thicker laminate and it added lots of strength.

I also wanted to try a design with the tail as part of the fuselage, and test a full flying elevator setup. Both are working very well so far.

Fuselage construction started with the side and bottom panels in uncovered depron

The sides were glued on top of the bottom panel, which defines the width of the front area.

The tail halves were glued together giving the taper curve, then top and bottom panels added.

The fuselage was then covered with 75 micron laminate. 
This added a great amount of strength, especially to the narrow tail area. 

The 2826/10 1400kV motor is mounted to 5mm plywood with ventilation holes drilled out. Initially I built in some down thrust but I am still testing to find the right amount. Plastic washers can be added or removed to vary the angle.

The most radical feature of this design is the flying elevator. The whole horizontal stabiliser pivots on a 3mm carbon fibre rod which also acts as the spar. The rod passes through a brass tube glued into the tail. The inner diameter of the brass tube must be just bigger than the CF rod to give free movement but minimal wiggle. To hold the brass tube firmly there are 25mm discs of foam sandwiched between ID card plastic on either side.

Plans

Overview and build video

Field and slope flights


SPECS
Armin wing span - 1.2m (47") 
Airfoil chord - 190mm (7") including 45mm (1.5") ailerons
Airfoil thickness - 23mm (12%) using 9mm formers 
Spar - Skyshark P4X 7.5mm x 850mm, 57mm back from LE
Fuselage Length - 700mm (27.5")
Flying weight (2200mAh LiPo) - 770g
Full span Ailerons / Flaperons
Full flying Elevator
Large Rudder
TGY 9018MG servos x 4 
Motor - Turnigy 2826/10 1400kV with 8x4 prop
ESC - Plush 40A

MATERIALS and LINKS

Wednesday, 12 November 2014

1.65m (65") Twin Boom pusher

This twin boom pusher is similar to the 1.3m Depron Spectre, however it has a straight 1.65m (65") x 190mm depron Armin wing and twin rudders.

1.3m Depron Spectre and 1.65m Twin Boom pusher

Initially it was designed it as a 1.8m light-wind slope soarer but didn't perform as well as I wanted. The longer tail booms and larger wing span made it too flexy and delicate. I was also comparing the performance to a motorless Phoenix 2000, which is a sensational sloper.
Shortened tail booms and wingspan stiffened up the airframe nicely and the addition of a motor fuselage turned it into an excellent FPV cruiser and medium wind FPV sloper. It tracks well in a straight line and has a decent glide angle but is quite agile like the Spectre.

Instead of using packing tape to cover the depron I used document laminating film, often referred to as New Stuff in the RC world. It is ironed on with a warm iron before bending the airfoil and fuselage, and works very well. It's tougher and easier to apply than packing tape.

Construction
See the depron wing build and Spectre overview videos for the basics, and the Spectre post on this blog.

Additional strengthening ...

6x1mm CF strip glued along the front of the elevator.


Heat bent UPVC brackets for the rudder to elevator joins.




I used twin rudder servos rather than one servo and a long vulnerable connecting pushrod between the rudders. Full length wing spar made from 2 Skyshark P4X spars joined with an internal CF rod joiner and epoxy. 

SPECS
Wingspan - 1.65m (68")
Chord - 190mm (7.5")
Length - 100cmm (36")
Airframe weight - 840g
Flying weight (2200mAh LiPo) - 1040g
Motor - Turnigy 2836 1100kV (260W)
ESC 30A Plush
Prop - 10 x 6"
Ailerons
Elevator
Twin rudders
TGY 9018MG servos x 2 (ailerons)
HXT900 servos x 3 (elevator and rudders)


I can email the Sketchup file if required



Initial slope soaring tests







Monday, 13 October 2014

Red Sloper with added dihedral

Here's a demo video covering how I add dihedral to a depron Armin wing.
I show how to bend a 200mm length of ali tube to set the dihedral angle and hold the spars.

This video also shows my swappable motor mount for the Red Sloper and other construction tips.


Here's a slope soaring video showing how the dihedral makes the Red Sloper into a smooth and relaxing glider while slightly reducing the aerobatic capability.





Tuesday, 8 July 2014

1.3m Twin-boom Pusher

Also called the Depron Spectre.

This was inspired by Alex Greve's (IBCrazy) EPP Specter designed for proximity and obstacle course FPV.

The twin boom configuration means the motor doesn't need to sit up high, which means the fuselage can be slimmer.

The forward swept wings give amazing anti-stall characteristics and increased grip in the turns. I suspect when the wing tips flex upward they give positive feedback to the turn, similar to snap flaps. A swept back wing would do the opposite. It also looks very cool in the air.

This plane can fly slow or fast and is crazy manoeuvrable even without movable rudders, and it can balance in it's tail.










The wing build is slightly different to my previous style, with cut out ailerons rather than full span. Wingspan is 1.3m or 53" compared to IBCrazy's 40" and 48" versions.

I made a 200mm (8") x 20mm flat bottomed airfoil in two 700mm halves, then cut a wedge from each inner end to make the forward sweep when glued and taped together. The tips are about 45mm forward of the root. I also cut wedges off the wingtips so they were parallel. Naturally I cut them the wrong way first.

I removed some of the forward former in the spar channel either side of the join so the Skyshark P4X spar had a wider bend curve.




Here it is in the air with 10-15kn wind


Wingspan - 1.3m (53")
Length - 80cm (32")
Airframe weight - 660g
Flying weight (2200mAh LiPo) - 850g
Motor - Turnigy 2822/14 1450kV (160W)
30A ESC
Prop - 7 x 4.5"
Ailerons
Elevator
TGY 9018MG servos x 3

Depron Spectre plans and dimensions





Build overview video


UPDATE: Here are a two more recent Depron Spectre videos. Some aerobatics on a rare calm 13th Beach day and some slope soaring at Beacon Point in a lovely 10-15kn NW wind.





Friday, 13 June 2014

Pusher with polyhedral

I have never tried a 3 channel rudder elevator throttle plane so thought I'd give it a go using the orange slim wing and pusher fuselage.

RET planes need some wing dihedral to enable turns due to the lack of ailerons.

I fixed the ailerons in place and removed the servos. This simplifies the plane greatly, the wing is just a wing, no servos or wires, apart from rudder and elevator.

The CF spar was removed and a bent 200mm x 10mm diam ali tube inserted to set the dihedral. The wing extensions were hot glued in place at the desired polyhedral angle. The wing seems to be strong enough without a CF spar.

I increased the rudder area, but after the maiden reduced the throws for smoother control.

The 1500mm x 200mm wing and flying weight of 630g gives a wing loading of about 21 g/sq dm (7oz/sq ft) which is great for gliding and slow flying.

This plane is a delight to fly, so slow and steady. If I had started with something like this the learning process would have been much quicker. I can trim it to fly hands off in big lazy circles and it takes care of itself.



Wingspan - 1.5m (59")
Chord - 200mm (8")
Elevator servo - TGY 900 9g
Rudder servo - TGY 500 5g (stronger servo might be safer)
Motor - Turnigy 2822/14 1450kV
Prop - 7 x 4.5"
Airframe weight - 520g
Flying weight - 630g with 1300mAh LiPo (gives 20 min slow flying)

Sketchup Plans











Saturday, 19 April 2014

Pusher trainer and test body

I made this plane so that my brother and his kids could have a go at flying RC planes, and as a test body for comparing different wings.

Actually this is the rebuild of that original plane which served it's purpose well, for one very windy but fun day.

It's a "pusher", meaning the motor is not on the nose but pushes from behind the wing. That means nose-in crashes won't end the flying session.

The tail boom is a 7.5 mm woven carbon fibre tube and the main body a 100mm x 60mm box.

The box needs to be tall enough so the prop clears the boom.

The rudder must be tall enough to get some of the airflow coming across the top of the wing. With a shorter rudder I experienced significant adverse yaw and poor directional tracking. Might be better with a tapered fuselage.
Motor mount is aluminium flat, bent up just past 90º and stuck on to a glued down ID card on top of the box.

Aileron servo lead extensions are taped to the rear sides of the box so wings can be easily swapped.








Multiple wing tie-down posts allow for different chord size wings to be mounted. The tie-down points are reinforced with pieces of ID card.

The tail boom is hot glued to the bottom of the body then depron strips glued either side of the tube for extra strength.






Tail servos are mounted on the tail.

I initially had the tail servos forward in the body with Gold-n-Rod push rods but these were chopped by the prop in a boom flexing hard landing.







The nose is soft parcel packing EPP covered in clear gaffer tape for impact absorbtion. It has an EPP tongue extending into the body to hold the battery. The battery can be moved right up into the nose or further back for balance.

I use this nose design in all my pusher and slope soarers now. Velcro tabs hold it in place.

Turnigy 2622/14 1450kV motor, 7x4.5 prop
500g without battery
Flying weight 610g with 1300mAh 3S

This video shows the maiden using a symmetrical 1.4m Armin wing








Tuesday, 15 April 2014

Newton Airlines fleet - 6 months in

Suddenly there are 10 planes vying for space in the hangar (hanging on the wall that is) so I thought it might be time to look back and review the fleet and my timeline of RC flight.

I have always been intrigued by foils. I have been mucking around with kites, sails and fins for as long as I can remember. Seeing what Ed from Experimental Airlines (EA) could produce with foam board, packing tape and hot glue was the inspiration that got me into this hobby so I started with one of his unique designs.


Ansley Peace Drone (APD)


1.5m (60") Quill foamboard wing
750mm (30") depron canard and fuselage
Elevons

This is the very first airframe I built before flying anything at all. It's a canard pusher plane which means the little wing is at the front and the motor is mounted at the rear. The only control surfaces are combined elevator and ailerons or elevons, requiring a programable transmitter.

The APD interested me because Ed designed it to carry a GoPro in the nose. I didn't complete this plane but it taught me the essential EA style building skills.


Photon motor glider


1.5m (60") Quill foamboard wing and fuselage
Depron tail
Ailerons, elevator, rudder
Turnigy 2826/6 2200kV motor with 6x4" prop
900g flying weight
2200mAh 3S battery

I thought I should learn to fly on a more conventional plane with elevator, rudder, ailerons and motor at the front so the APD main wing was reused as the Photon wing.

Timelapse Photon fuselage and tail build


This was the very first RC plane I flew, no experience at all, no friends who flew RC, not even simulator time. I had read a lot and watched videos, but in hindsight I was making my life difficult trying to build and learn to fly my first plane with no help and no experience. But lots of valuable lessons were learned very quickly.

On the maiden flight I did succeed in getting off the ground and flying around a little bit but nosed in after a few minutes - no idea why. On the second flight I launched, flew around (occasionally in control) and glided down for a soft landing when the motor stopped making a noise.

Lesson learned - balance the prop and Locktite the motor mounting screws in.

Photon second flight

Within a few flights I realised that this plane was not the best trainer for a complete beginner. I'd be flying OK then lose orientation, panic and crash, requiring another nose rebuild, so I decided to transform the Photon into another of Ed's designs, the more docile Axon trainer.


Axon pusher prop trainer


Reused wing and tail from Photon
Ailerons, elevator, rudder
Turnigy 2826/6 2200kV motor with 6x4" prop
950g flying weight
2200mAh 3S battery

The great feature of the Axon is that the motor and prop are behind the wing and the nose just holds the battery. As you can see in the maiden video a crunched nose doesn't mean the end of the flying session.

I also added some dihedral to the wing tips which means the plane is self levelling to some extent. The high wing and pusher prop setup make the Axon a much better trainer.

Axon trainer maiden

Success! This plane taught me to fly. No turning back now.


Mosquito


750mm (30") wingspan
400g flying weight
500mAh 2S battery
Ailerons, elevator
Hextronic 24g motor with 8x4" prop

Reusing the APD 30" canard wing section I made up this small and lightweight plane with an arrow shaft as the fuselage. 24g Hextronic motor, ailerons and elevator.

The mosquito was fun but a bit frantic. It was too manoeuvrable and nimble for my flying skills at that stage. I had lots of prop breaking crashes and found it very difficult to keep up in the air. A design to revisit in the future.


Old Fogey

The chaps at Flite Test (FT) designed this slow flying almost comical looking plane and, as with all their designs, provided plans online.

I set about making one from locally available Quill foam board, 24g motor and the same electronics as FT.

It just didn't want to fly, couldn't stay airborne for more than a few meters with the tiny 24g motor and 2S battery. With a more powerful 2826/6 2200kV motor it took off but was uncontrollable.

Turns out the Adams foam board used by FT is half the weight (and 1/10th the price) of Quill. Unfortunately Adams board (also called Dollar Tree foam board) is not available here.

Even drastic weight saving measures, like cutting holes everywhere, weren't enough to get the Old Fogey working well. Most of my problem was reluctance to weight up the nose enough for balance. I'm sure I can get the Old Fogey flying with the right combo of motor and weight balance but for now it is just a display plane. Another project to revisit when time permits. I'll make one from depron eventually and all will be good.


Foamboard in Australia

This triggered an exhaustive investigation into foam board in Australia. I found that all paper-covered board available here was way heavier than Adams and up to 10 times the price. Here's my article on Flite Test

Uncovered 6mm Depron from tradewarehouse.com.au turned out to be the best locally available building material. It's even lighter than Adams foam board and the one of the cheapest options when bought in bulk, working out at $5.30 per equivalent 70x50cm board. The bulk box contains 20 double sized 100cm x 70cm boards and costs $212 delivered.


Bixler 2 motor glider

1.5m wingspan
Ailerons, flaps, elevator, rudder
EPO foam construction
850g flying weight
2200mAh 3S battery

This was my first shop-bought plane and what a revelation it was. I'd advise anyone starting out to buy one of these and the learning experience will be much easier and quicker.

$80 from HobbyKing with motor and servos installed but you need to add ESC, battery and receiver (and flap servos if you want).

It comes with separate ailerons and flaps but no flap servos installed. I added them because I wanted to play with the full house of control surfaces. However the flaps are not necessary for normal flying, might be useful for carrying heavy loads but I think it's better to join the flaps and ailerons to make them almost full span, better for aerobatics.

The Bixler is perfect for carrying a camera and very popular as an FPV (First Person View) platform. Haven't tried FPV yet, another future project. It's a wonderful motor glider to fly, very smooth and stable, can hold up to many crashes, easy to repair and spare parts are very cheap.

Lessons learned - Tighten the prop retaining collet hard. Launching can be tricky, need to give it a decent throw with 3/4 revs and pull back on the elevator stick straight away. The high mounted and down angled pusher motor tends to drive the plane down in to the ground on launch.

Bixler 2 maiden flight - Bixler tail cam


In those early weeks there didn't seem to be many calm windless days, which are essential for learning. There's the biggest tip for learning…wait for a calm day. Wind is your enemy when learning, it's so much easier when your plane isn't speeding off down wind with every mistake.

I decided to use the wind and investigate slope soaring. We have plenty of suitable slopes around Geelong and plenty of wind. The idea of not having to worry about motors, ESCs and props also appealed to me.


Yellow Depron Sloper

1.2m wingspan
130mm (5") chord + 30mm (1.25") flaperons
420g flying weight
500mAh 2S battery
Flaperons, elevator

This TLAR design plane (That Looks About Right) uses a 7.5mm carbon fibre arrow shaft from nose to tail. The 5" chord Armin wing has some dihedral built in which makes the glider easier to fly. To some extent it self corrects the side to side roll. 5mm CF spars fit into a bent aluminium tube to set the dihedral angle.

I was amazed the first time I threw it off a slope, it actually worked. Without really knowing what I was doing I could make it hover out in front. Eventually I learned to fly along the slope but in strong winds I often lost control to see it flying away over my head. However this plane did a lot to train my fingers on the sticks. A great little glider that is still flying today.

Lessons leaned - Slope soaring is great fun. Need to keep it out front in strong wind.

Yellow sloper maiden - Yellow sloper onboard video


Synapse flying wing sloper

1.3m (48") wingspan (measured straight across)
Made from 2 x 700mm, 7" chord Armin sections
7" chord with 2" elevons (10" swept chord)
350g flying weight plus 50 to 150g ballast
4xAAA NiMH battery

Next in the line up was another EA design.
The Synapse was designed as a flying wing with  a fuselage pod holding the motor and battery, but I wanted to try it as a pure wing sloper.

This one is so easy and quick to build, all done in a day. Flying wings are almost indestructible and even after many hard landings this one is still flying today.

This glider prompted me to investigate the many nearby coastal dunes and introduced me to proper slope soaring, what a buzz. Slope soaring is now, by a long way, my favourite form of RC flight.
Can't beat the feeling of climbing to the top of the dune, feeling the breeze straight in your face and seeing the wide expanse of deserted beach below.

Lessons learned - Coastal dune slope soaring is my favourite pastime. More weight is required as wind strength increases. Coastal dune scrub is almost impenetrable.

Synapse sloper maiden - Synapse in 15kn


VERSUS Discus Launch Glider (DLG)

1.5m wingspan
300g flying weight
300mAh 2S battery
Flaperons, elevator, rudder

After watching the DLG episode of Flite Test I had to have one. DLGs are ultralight and highly refined thermal gliders that you launch using a discus style spinning launch.

The VERSUS is probably the cheapest entry level DLG available, costing around $200 for the kit from Hobby King. Four high quality micro servos, small receiver and battery are required so final cost is closer to $300. Competition level DLGs cost 2 to 3 times more but the VERSUS is fine for me.

Here is my detailed video and photo log of the build.

I love flying this DLG although early hard landings have led to a few too many repair sessions. A bad launching technique can play havoc with dodgy shoulders, but I'm improving. Decent DLGers can launch to 60m while I'm currently only getting up to 40m.

If there are no thermals or lift around flights last for 30 or 40 sec. But when you find some rising air the thrills begin and flight times can extend to minutes. There are lots of new skills to learn with launching, thermal hunting and DLG catching so I'm sure I'll be DLGing for years to come. This my plane of choice for warm calm days.

Lessons learned - Don't drop the transmitter while doing the discus launch spin, use a wrist strap. Throw with your body not your just arm.

VERSUS DLG maiden - First thermal - Catch and throw


Le Fish aerobatic slope soarer

1.5m wingspan symmetrical airfoil
Laminate covered EPP foam
Flaperons, elevator, rudder
600g flying weight
500mAh 3S battery

The next slope soarer purchase was inspired by Steve Lange and his Le Fish performing beautiful and mind blowing manoeuvres on the slope. In 2005 Steve designed this glider to perform unlimited VTPR aerobatics. (VTPR - French for Aerobatics close to the ground)

Le Fish is an EPP foam, laminate covered sloper that is designed to fly upside down, sideways, perform loops and rolls and whatever else the pilot is up for.

Here's my build video and photo log for Le Fish. This kit came from Leading Edge Gliders for US$140 plus about $50 freight.

The build taught me lots of new techniques, like foam fuselage shaping, laminate covering and deciding how to lay out the electrics. There are no set instructions and many different configurations.

Flying slope aerobatics takes a lot of practice and glider trimming but it's all worth it. The shape and height of your slope dictates what style of aerobatics is possible. A steep cliff is needed for true VTPR style flying, unlike our gentle low dunes.

Lessons learned - Aerobatics is not easy but great fun learning. You will crash often but these EPP gliders are very tough.

Le Fish maiden - Getting better - Le Carnage


Ultralight Le Fish

1.5m wingspan symmetrical airfoil
Laminate covered EPP foam
Flaperons, elevator, rudder
450g flying weight
500mAh 3S battery

That hard crash in "Le Carnage" prompted me to order 2 spare Le Fish short kits from Flying Foam. I didn't think my first Le Fish would survive my aerobatics learning process.

Turns out I was wrong, it's still going well and not looking like falling apart any time soon.

With one of the kits I decided to build an ultralight Le Fish. Smaller lighter servos and less reinforcing spars save quite a lot of weight and make for a wonderful floaty sloper. It feels quite delicate but less weight means less momentum in the crashes, and I tend to only use this one in lighter winds.

The ULF acts like it's on an elastic sky hook, recovering instantly from stalls and mistakes, and is so responsive it's an absolute delight. At this stage I have only had a few sessions but can't wait for more.

Ultralight Le Fish maiden

Lesson learned - Lighter is better. Le Fish is awesome.


Bixler 2 as a slope soarer

As my sloping skills improved I was keen to try other planes on the dunes.

On one light wind day when the ULF was struggling to stay up I decided to give the Bixler a throw. What an eye opener, very smooth and stable flying in the light lift along the ridge and with the security of the motor for extra light patches.

As a pure sloper when the wind gets around 10kn it is wonderful, not aerobatic but a relaxing cruiser. I guess the flat bottomed wings produce more lift than the symmetrical Le Fish wings.

Bixler 2 sloping


Motorised Synapse wing

Turnigy 2826/6 2200kV motor with 6x4" prop
Hextronic 24g motor with 8x4" prop
550 to 600g flying weight
1300mAh 3S battery

The time had come to revisit old designs and see what some tweaks could achieve.

I decided to try a motor on the Synapse as Ed originally intended and the result was excellent. The Synapse, if the weight is kept light, makes a really nice slow and steady flyer.

With the extra weight of motor and battery it became a much smoother and more controllable slope soarer too.

Motorised Synapse - Slope soaring


2m motor glider

2m wingspan
5" chord + 1.5" ailerons
750g flying weight
1300mAh 3S battery
Turnigy 2826/6 2200kV motor with 6x4 prop

I have been hearing so many glowing reviews of the 2m Radian motor glider so I thought I'd try to
make something similar.

Unfortunately this one never lived up to my hopes. It looked great and climbed eagerly into the sky but the glide slope was terrible and directional stability all over the place. It would loop up and down and wobble side to side excessively. Shifting the CG around didn't seem to help much. Taking out the dihedral did smooth it out a bit but didn't improve the glide slope to what I was expecting.

In the end I figured my airfoil shape was too fat. The wing was a 5" chord Armin style construction but I was using 6mm depron, not 5mm Adams foam board, and a 7.5mm spar. With 2 layers of former and the thicker spar mine ended up about 26mm thick compared to Ed's 20mm.

I eventually crunched this plane trying low level inverted flying. Might have been sub consciously deliberate? Anyway I was glad to move on and investigate thinner airfoils suitable for my 6mm depron.


Ansley Peace Drone - revisited


1.5m (60") wing
750mm (30") canard and fuselage
Elevons
Turnigy 2836 1700kV motor with 10x4 prop
950g flying weight
2200mAh 3S battery

I slit open the 2m motor glider wing, ripped out one layer of former then glued it back together.
Cut down to 1.5m it made the APD main wing with a slimmer 20mm thick 5" chord. One of the 25cm offcuts and the original APD canard made up the new 30" canard and the APD was reborn.

This is a real slow and steady cruiser with elevon control only. It's great in a straight line but to turn it needs sufficient speed and height. It looks plain weird in the sky seemingly flying backwards.

As a slope soarer it was not a great success. Motor is required to make the turns but it cruises along the ridge nicely.

Ansley Peace Drone - APD sloping


Orange slim wing

1.2m wing
6.5" chord + 1.5" ailerons
20mm thick
Flaperons, elevator, rudder
Turnigy 2826/6 2200kV motor with 6x4 prop
600g flying weight
1300mAh battery

I made this plane to test the theory that a thinner airfoil is better than one that is too thick.

The slimmer wing works very well with a great glide slope and smooth controllable performance, none of the looping and stalling of the 2m wing. Mild aerobatics like loops and rolls were easy and it could fly inverted with heaps of elevator.

An electrical brown-out brought about the premature demise of this one, maybe due to my dodgy soldering. I have since upgraded to a more powerful soldering iron.

Orange slim wing maiden


Orange slim wing slope soarer

1.2m wing
6.5" chord + 1.5" ailerons
20mm thick
Flaperons, elevator, rudder
450g flying weight
500mAh 3S battery

I rebuilt this one as a sloper, which basically means replacing the crunched motor mount nose with a longer battery-holding nose.

Awesome, it worked very well, nimble, light and easy to fly. Rolls were OK but inverted required heaps of elevator. Loops weren't possible.

Orange slim wing sloper

Next project is to try this glider with a symmetrical wing and Le Fish sized elevator and rudder.